by Whomp Comic
Why is this so cute?
ME THO
Month: May 2017
A small personal comic I’ve been working on about art and perspective.
With a example I often use when my friends talk to me about being tired of their own art.
Support on Patreon for future comics
The babes have arrived safe and sound, despite a shipping delay that had me stressing pretty hard this morning.
We welcome a JMG Coral Ghost corn, a pair of patternless albino Everglades rat snakes produced by Frank Patinella, and a pair of Strawberry Anery corns from VMS Herp to the OMG Snakes family!
I snapped some quick pics during unboxing, and into quarantine the babies go! They’ll get names once I’ve had a chance to get to know them a little bit.
The upper atmosphere of the Sun is dominated by plasma filled magnetic loops (coronal loops) whose temperature and pressure vary over a wide range. The appearance of coronal loops follows the emergence of magnetic flux, which is generated by dynamo processes inside the Sun. Emerging flux regions (EFRs) appear when magnetic flux bundles emerge from the solar interior through the photosphere and into the upper atmosphere (chromosphere and the corona). The characteristic feature of EFR is the Ω-shaped loops (created by the magnetic buoyancy/Parker instability), they appear as developing bipolar sunspots in magnetograms, and as arch filament systems in Hα. EFRs interact with pre-existing magnetic fields in the corona and produce small flares (plasma heating) and collimated plasma jets. The GIFs above show multiple energetic jets in three different wavelengths. The light has been colorized in red,
green and blue, corresponding to three coronal temperature regimes ranging from ~0.8Mk to 2MK.Image Credit: SDO/U. Aberystwyth
Neutron Stars Are Weird!
nasa:
There, we came right out and said it. They can’t help it; it’s just what happens when you have a star that’s heavier than our sun but as small as a city. Neutron stars give us access to crazy conditions that we can’t study directly on Earth.
Here are five facts about neutron stars that show sometimes they are stranger than science fiction!
1. Neutron stars start their lives with a bang
When a star bigger and more massive than our sun runs out of fuel at the end of its life, its core collapses while the outer layers are blown off in a supernova explosion. What is left behind depends on the mass of the original star. If it’s roughly 7 to 19 times the mass of our sun, we are left with a neutron star. If it started with more than 20 times the mass of our sun, it becomes a black hole.
2. Neutron stars contain the densest material that we can directly observe
While neutron stars’ dark cousins, black holes, might get all the attention, neutron stars are actually the densest material that we can directly observe. Black holes are hidden by their event horizon, so we can’t see what’s going on inside. However, neutron stars don’t have such shielding. To get an idea of how dense they are, one sugar cube of neutron star material would weigh about 1 trillion kilograms (or 1 billion tons) on Earth—about as much as a mountain. That is what happens when you cram a star with up to twice the mass of our sun into a sphere the diameter of a city.
3. Neutron stars can spin as fast as blender blades
Some neutron stars, called pulsars, emit streams of light that we see as flashes because the beams of light sweep in and out of our vision as the star rotates. The fastest known pulsar, named PSR J1748-2446ad, spins 43,000 times every minute. That’s twice as fast as the typical household blender! Over weeks, months or longer, pulsars pulse with more accuracy than an atomic clock, which excites astronomers about the possible applications of measuring the timing of these pulses.
4. Neutron stars are the strongest known magnets
Like many objects in space, including Earth, neutron stars have a magnetic field. While all known neutron stars have magnetic fields billions and trillions of times stronger than Earth’s, a type of neutron star known as a magnetar can have a magnetic field another thousand times stronger. These intense magnetic forces can cause starquakes on the surface of a magnetar, rupturing the star’s crust and producing brilliant flashes of gamma rays so powerful that they have been known to travel thousands of light-years across our Milky Way galaxy, causing measurable changes to Earth’s upper atmosphere.
5. Neutron stars’ pulses were originally thought to be possible alien signals
Beep. Beep. Beep. The discovery of pulsars began with a mystery in 1967 when astronomers picked up very regular radio flashes but couldn’t figure out what was causing them. The early researchers toyed briefly with the idea that it could be a signal from an alien civilization, an explanation that was discarded but lingered in their nickname for the original object—LGM-1, a nod to the “little green men” (it was later renamed PSR B1919+21). Of course, now scientists understand that pulsars are spinning neutron stars sending out light across a broad range of wavelengths that we detect as very regular pulses – but the first detections threw observers for a loop.
The Neutron star Interior Composition Explorer (NICER) payload that is soon heading to the International Space Station will give astronomers more insight into neutron stars—helping us determine what is under the surface. Also, onboard NICER, the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) experiment will test the use of pulsars as navigation beacons in space.
Want to learn even more about Neutron Stars? Watch this…
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
I love how Ozzie deserves his own recognition.
It’s Ozzy fucking Osbourne of course be deserves his own
Jorge R. Gutierrez on Twitter
idk if anyone on tumblr has seen this yet but….. go blow up Jorge’s twitter feed and let him know y’all want more Book of Life!!!
It’s not unusual for him to like your tweets back too, he’s such a cool dude. Keep this man making movies.
PLUS HOW FUCKING DOPE IS THIS CONCEPT ART!???!?!